

SINCE 1990

SPARK[™] INTERNAL HEX CONNECTION

Spark[™] TPI Features

The Spark[™] implant is a root-form bone-condensing implant, which utilizes platform-shift technology. These features make the Spark[™] a great choice for immediate load applications. This technology coupled with a standard platform internal hex connection makes the Spark[™] one of the easiest implants to place and restore.

Increased Stability

The Spark[™] implant features aggressive bone-condensing threads, which are optimal for immediate load applications. The primary stability of this implant makes it a great choice for extraction sockets. The tapered coronal collar of the Spark[™] allows bone to grow over a small shelf of the top of the implant, increasing stability.

Dynamic Positioning

The apex of the Spark[™] implant consists of reverse-cutting flutes, which allow clinicians to adjust the orientation of the implant during placement. This is particularly useful in extraction sites.

Optimal Esthetics

A tapered coronal collar and platform-switching prosthetics are used to optimize bone and soft tissue growth. These design features maximize tissue growth around the collar of the implant. This makes the Spark[™] a great choice for the esthetic zone.

Integrated SLA Surface™

Through a process of grit blasting and acid etching, Hi-Tec's Integrated SLA Surface[™] produces highly osseo-conductive implants. This increases bone to implant surface area, which accelerates and improves osseo-integration.

Four Diameters-One Platform

The Spark[™] is available in four diameters, which all share the same restorative platform. This design not only simplifies the selection of prosthetics, but also provides a shelf for tissue to grow on top of the implant. The platform used is a standard internal hexagon connection, which is the most common connection available today. This greatly simplifies the placement and restoration of these implants.



www.dit-usa.com

SINCE 1990

TECHNICAL SPECIFICATIONS INTERNAL HEX CONNECTION

- Surface Finish: SLA Integrated Surface™
- Implant Collar: Tapered, Textured Micro-Thread
- Delivery System: Available with a Placement Mount
- Implant Placement Torque: 30-60Ncm
- Abutment Torque: (Standard 35Ncm) (Multi-Unit 15Ncm)
- Prosthetic Screw Type: .050" (1.25mm) Hexagon
- **Compatibility:** Zimmer[®] Screw-Vent[®] (3.3mm, 3.7mm, 4.1mm)

*Zimmer Screw-Vent is a registered trademark of Zimmer Dental Inc.

4.3 6.0mm 8.0mm 10.0mm 11.5mm 13.0mm	l Platform		5.0 6.0 8.0 10. 11. 13.	0 0mm 0mm 5mm 0mm	latform		6.0 6.0n 8.0n 10.0 11.5	nm nm mm	atform
								→ 4.2mn	
Ø 4 .:	3mm		_				_	→I 4.05mr Ø 6.0m	
• •	•		CSD X						
			3.65	4	CSD				
	•	•	1/2		X				
2.0 2.5	2.8	3.2	3.65	4	4.3	4.5	CSD		
• •	•	•	•	•	1/2	1/2	X		
2.0 2.5	2.8	3.2	3.65	4	4.3	4.5	5.2	5.5	
• •	•	•	•			•		1/2	~
Į Į	ĺ	R'					R.		
	4.3 6.0mm 8.0mm 10.0mm 11.5mm 13.0mm 16.0mm → 1 3.9 → 1 3.9 → 1 3.9 → 1 3.9 → 1 3.0 Ø4. Drill Seque 2.0 2.5 • • • 2.0 2.5 • • • 2.0 2.5 • • • 2.0 2.5 • • • • • • 2.0 2.5 • • •	6.0mm 8.0mm 10.0mm 11.5mm 13.0mm 16.0mm → 3.9mm ←→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	4.3 6.0mm 8.0mm 10.0mm 11.5mm 13.0mm 16.0mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.0mm \rightarrow 3.0mm \rightarrow 2.0 2.5 2.8 3.2 \bullet 2.0 2.5 2.8 3.2 \bullet	4.3 5.0 6.0mm 6.0 8.0mm 10. 10.0mm 10. 11.5mm 11. 13.0mm 13. 16.0mm 16. \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.0mm \rightarrow 3.0mm \rightarrow 2.8 \rightarrow 3.2 \sim 3.65 \sim 3.2 \sim 3.65 \sim 3.2	4.3 5.0 6.0mm 6.0mm 8.0mm 10.0mm 10.0mm 10.0mm 11.5mm 11.5mm 13.0mm 14.0mm 16.0mm 16.0mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow 3.9mm \rightarrow \rightarrow \rightarrow $3.9mm$ \rightarrow $3.9mm$ \rightarrow $3.9mm$ \rightarrow $3.9mm$ \rightarrow $3.9mm$ \rightarrow $3.9mm$ \rightarrow $3.0mm$ \rightarrow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3 5.0 6.0mm 8.0mm 10.0mm 10.0mm 11.5mm 10.0mm 13.0mm 10.0mm 16.0mm 1.5mm 13.0mm 14.0mm 16.0mm 10.0mm 13.0mm 14.0mm 10.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 13.0mm 16.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 11.5mm 13.0mm 11.5mm 13.0mm 16.0mm 13.0mm 16.0mm 13.0mm 17.0mm 10.0mm 18.0mm 13.0mm 19.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm 10.0mm<	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

www.dit-usa.com

HI-TEC IMPLANTS™

Self Thread[™] 3.3 & 3.75, Logic Plus[™], Spark[™] Implants Internal Hex Connection - Standard Platform

Analogs Cuff SKU Length Height Item **Ball Attachment** BNL 14mm Analog 3 Implant Analog IL 10.7mm Digital Analog ILD 10mm Impression Copings 10.5mm Closed Tray AAT Impression Coping Open Tray AAT-L 14.5mm Impression Coping Snap Cap AST 13mm Impression Coping T-PT Snap Cap 10mm **Titanium Preparable Abutments** Straight Titanium ACA 9.8mm 0mm Abutment ACA-E-1 7.9mm 1mm ACA-E-2 ACA-E-3 8.9mm 9.9mm 2mm 3mm ACA-E-4 10.9mm 4mm Wide Profile ACA-P 9.8mm 0mm Round Profile ACA-R 13.6mm 0mm Narrow Profile ACA-S 8.86mm 0mm SCA Non-Engaging 11.10mm 0mm Modular ACA-G-1-SET ACA-G-2-SET 1mm Abutment Set 2mm ACA-G-3-SET 3mm ACA-G-4-SET 4mm ANA-15 9.1mm 1.2mm 15 Degree Angled ANA-15-E-1 8.2mm 1.15/2.05mm **Titanium Abutment** ANA-15-E-2 9.2mm 2.15/3.05mm 25 Degree Angled ANA-25 9.4mm 1.3mm Titanium Abutment Zirconia Preparable Abutments Straight Zirconia ZTA 10.6mm 1.5/ Abutment 2.5mm 15 Degree Angled ZTA-15 9.1mm 1.2/ Zirconia Abutment 1.2mm **Healing Abutments** HC-3 Healing Abutment 3mm HC-5 5mm Anatomical Healing HC-3-P 3mm Abutment HC-5-P 5mm **Temporary Abutments** Straight Peek Nylon RPA 9.7mm 1.5mm H

lemporary Abutment			
15 Degree Peek Nylon Temporary Abutment		9.1mm	1.2mm
25 Degree Peek Nylon Temporary Abutment		9.4mm	1.3mm
Non-Engaging Straight Titanium Temporary Abutment	PCA-R-TI	11.6mm	

	Castable UCL	A Abutme	ents	
	Item	SKU	Length	Cuff Height
J	Engaging Plastic Castable Abutment	PCA	11.7mm	1mm
1	Non-Engaging Plastic Castable Abutment	PCA-R	11.7mm	1mm
	Engaging Gold Castable Abutment	PGA	10.7mm	
	Non-Engaging Gold Castable Abutment	PGA-R	10.7mm	
	Engaging Titanium Castable Abutment	ΡΤΑ	11.2mm	
	Multi-Unit Co	mponents	5	
Î	MU - Closed Tray Impression Coping	MU-AAT	9mm	
Ì	MU - Open Tray Impression Coping	MU-AAT-L	13.87mm	
)I	MU - Analog	MU-CL	13.14mm	
	MU - Fixation Screw	MU-FS		
$\ \ $	MU - Healing Cap	MU-HC	4.71mm	
I	MU - Plastic Castable Sleeve	MU-PC	11.9mm	
	MU - Titanium Sleeve	MU-TPC	12.25mm	
	MU - Scan Body	MU-SCAN	8.59mm	
Λ	MU - Titanium Base	MU-TB	4.5mm	
ļ	MU - Straight Abutment	S-MU-1 S-MU-2 S-MU-3 S-MU-4	3mm 4mm 5mm 6mm	1mm 2mm 3mm 4mm
4	MU - 17 Degree Angled Abutment	S-MU-17 S-MU-17-2	4.76mm 6.2mm	1.7/ 3.08mm 3.1/ 4.5mm
Ŷ	MU - 30 Degree Angled Abutment	S-MU-30	5.3mm	1.7/ 4.07mm
P	MU - Zest [®] Locator Abutment Collar	8909-2	1.0mm	

Castable UCLA Abutments

O-Ball Abutments

(2-Pack)

O-Ball Abutment	BBA-0.5 BBA-2 BBA-4 BBA-6	3.8mm 5.3mm 7.3mm 9.3mm	0.5mm 2mm 4mm 6mm
Metal Housing	MH	3.22mm	
Nylon Cap - Extra Light Retenti	NC-CLEAR on		
Nylon Cap - Light Retention	NC-PINK		
Nylon Cap - Medium Retention	NC-ORANGE		
Nylon Cap - High Retention	NC-GREEN		

Prosthetic Elements

CAD/CAM Custom Prosthetics

	CAD/CAM Custom Prostnetics				
	Item	SKU	Length	Cuff Height	
	Short Scan Body	S-SCAN-S	7.8mm		
	Long Scan Body	S-SCAN-L	9.95mm		
Ü	Multi-Unit - Scan Body	MU-SCAN	8.59mm		
Λ	Multi-Unit - Titanium Base	MU-TB	4.5mm		
	Digital Analog	ILD	10mm		
	Engaging T-Base Abutment	S-PRN	5mm		
	Non-Engaging T-Base Abutment	S-PRN-R	4.5mm		
	Engaging Screw Retained T-Base Abutment	ZTA-T			
	Non-Engaging Screw Retained T-Base Abutment	ZTA-T-R			

Zest[®] Locator Abutments

		Locator Internal Hex Standard Platform	8661 8662 8663 8664 8665 8625 8625 8626	0mm 1mm 2.5mm 3.5mm 4.5mm 6.5mm
n		Locator RT-X Internal Hex Connical Connection Platform (Includes Male Processing Package)	30200-03 30200-04	0.5mm 1mm 2mm 3mm 4mm 5mm 6mm
		Locator Male Processing Package	8519-2 8519-10	2-Pack 10-Pack
		Locator Extended Male Processing Package	8540-2 8540-10	2-Pack 10-Pack
		Locator Replacement Denture Cap Male Assembly	8510-4 8510-10	4-Pack 10-Pack
	0	Locator Female Analog (4mm Diameter)	8530-4 8530-20	4-Pack 20-Pack
	1	Locator Female Analog (5mm Diameter)	8516-4 8516-20	4-Pack 20-Pack
	đ	Locator Impression Coping	8505-4 8505-20	4-Pack 20-Pack

Internal Hex Surgical Kit

Bone Taps

L-BT-3.5 - E	8one Tap for LGI+ & Spark - 3.5mm, wrench	۱
L-BT-4.3 - E	8one Tap for LGI+ & Spark - 4.3mm, wrench	۱
L-BT-5.0 - E	8one Tap for LGI+ & Spark - 5.0mm, wrench	۱
L-BT-6.0 - E	8one Tap for LGI+ & Spark - 6.0mm, wrench	n
N-BT-II - E	Bone Tap for Self Thread - Handpiece 3.3m	m
S-BT-II - E	Bone Tap for Self Thread - Handpiece 3.75r	mm
G-BT-II - E	Bone Tap for Self Thread - Handpiece 4.2m	m
W-BT-II - E	Bone Tap for Self Thread - Handpiece 5.0m	m

Burs & Drills

h		
	RB - 2.0mm Round Bur NX-LD-20T - 2.0mm Lindeman Bur NX-TLD-20T - 2.0mm Lance Drill CSD - Implant Countersink	
	PD200L16C - 2.0mm Carbide Implant Drill TD250L16C - 2.5mm Carbide Implant Drill TD280L16C - 2.8mm Carbide Implant Drill TD320L16C - 3.2mm Carbide Implant Drill TD365L16C - 3.65mm Carbide Implant Drill TD400L16C - 4.0mm Carbide Implant Drill TD430L16C - 4.3mm Carbide Implant Drill TD450L16C - 4.5mm Carbide Implant Drill TD520L16C - 5.2mm Carbide Implant Drill TD550L16C - 5.5mm Carbide Implant Drill	
	Implant/Mount Tools	
	LIT-C - Implant/Mount Tool for Handpiece LIT-S - Short Implant/Mount Tool for Ratchet	

LIT-M - Medium Implant/Mount Tool for Ratchet

The internal hex connection surgical kit is entirely customizable to your preferences. This kit is compatible with Hi-Tec[™] Logic Plus[™], Spark[™], and Self Thread[™] implants. It houses all of the insertion tools, drivers, and drills necessary for implant surgery. This kit is convenient and easily organized with detailed labels and categories for each instrument. It is a fully autoclavable kit made of surgical stainless steel that withstands long-term sterilization.

Prosthetic Drivers

Ratchets & Attachments

DL - Drill Extension	
MU-IT - Hex Tool for Multi-Unit Ab	utments
MU-IT-Q - Square Tool for Multi-Ur	nit Abutments
RAD - Hex to Square Adapter	
ART - Hex/Square to FT Adapter	
LS - Square to Latch Adapter	
HR - Hex Ratchet	and the second state
HR-S - Square Ratchet	
HR-TW - Hex Torque Wrench	Nemissues Hillill
HSD - Hex Straight Driver Handle	
VS - Titanium Vessel for Mount Re	moval
PT - Paralleling Tool	
MU-AH - Multi-Unit Angulation Ho	lder

Integrated Surface[™] Characteristics

Hi-Tec Implant's[™] Integrated Surface[™] is an SLA macro/micro implant surface, which is applied to the implant by large grit blasting, followed by a process of acid treatments. This results in a porous osseo-conductive surface that is an ideal platform for cell attachment. This process increases implant to bone contact and facilitates bone formation and superior osseo-integration.

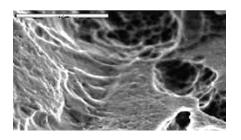
Macro Surface

A macro surface is achieved by blasting the implant with 60 micron large grit particles that create pores 10-30 microns wide. The topography of the surface is 10 microns from peak to valley. This significantly increases the implant surface area and the retention on the implant. The macro pores contribute to initial stability, shortened healing time, and provide ultimate load bearing capacity.

Micro Surface


The micro-texture is created by chemical processes and is characterized by micro grooves of 0.503 microns. The micro voids are osseo-conductive and facilitate bone formation for faster osseo-integration and mechanical interlock between the bone and the implant.

Surface Composition


Surface composition analyzed by scanning electron microscopy presents a titanium oxide surface layer with a composition of 50% oxygen at the surface. Auger Spectron spectroscopy demonstrates that the depth of the titanium oxide layer is 200 angstroms.

Predictable Performance

SLA technology has a long history of proven effectiveness as one of the most documented surfaces in dental technology. Hi-Tec Implant's[™] Integrated Surface[™] has extensive healing potential, which results in accelerated osseo-integration. This makes the healing process more predictable for both you and your patient.

SEM SCANNING ELECTRON MICROSCOPE x 100

SEM SCANNING ELECTRON MICROSCOPE x 5000

7			
		11.	
4.		i A	
1 Am	-	V.	
1	1		Sec. 44

SURFACE COMPOSITION BY SEM

Implant Packaging

Mounted Implants

Most Hi-Tec Implants[™] are available with an initial placement mount (Figure 1.). This mount is used to carry the implant to the surgical site. It should not be used for full placement of the implant, as it is designed only for the delivery of the implant to the osteotomy. After lightly threading the implant into the osteotomy, remove the mount with a 1.25mm (0.50") hexagonal driver. Once the mount is removed, use an implant insertion tool (specific to the implant being used) to drive the implant into the osteotomy. Following the implant placement, the mount can then be reattached to the implant and used as a closed tray impression coping. Remove the mount with a 1.25mm (0.50") hexagonal driver after taking the impression. After completing the impression, the provided cover screw can then be secured. This first stage cover screw is used to seal the connection of the implant. The cover screw can be secured and removed using the same 1.25mm (0.50") hexagonal driver. All drivers and insertion tools are provided in the surgical kit or can be purchased separately.

Alternatively, some Hi-Tec Implants[™] are offered without an initial

Non-Mounted Implants

placement mount for ease of placement. Instead of being packaged in a sterile plastic carrier, mountless Hi-Tec Implants[™] are supplied in a sealed titanium vial (Figure 2.). The vial's material is designed to protect the implant's surface, ensuring optimal osseointegration. The lid of the vial contains a first stage healing screw, which can be used to cover and seal the connection of the implant. Placement of a mountless implant is easy, simply secure the corresponding insertion tool into the connection of the implant and carry it to the osteotomy. Then use the insertion tool to securely place the fixture into the osteotomy. After placing the implant, the first stage cover screw can be secured using the 1.25mm (0.50") hexagonal driver. The drivers and insertion tools are provided in the surgical kit or can be purchased separately.

(Figure 2.)

Mounted (Figure 1.)

Hi-Tec Implants[™] meets and exceeds the highest standards in the field of medical devices: the main approvals, besides many others, are:

FDA APPROVAL: Center for Devices and Radiological Health in the US FDA (Food and Drug Administration) Since 1994.

CE MARK – After demonstrating compliance with Annex II of Medical Devices Directive 93/42/EEC, entitles us to use CE Marketing on our products.

ISO 13485: 2003 – An international standard for quality management of medical devices, Hi-Tec Implants LTD[™] meets the requirements of ISO 13485 : 2003 for the design, manufacturing and inspection of dental implants and accessories.

ISO 9001: 2000 – Certifies that Hi-Tec Implants LTD[™] demonstrates compliance of our quality system to meet the requirements of ISO 9001: 2000 (an international standard for quality management system).

Health Canada Medical Device License and CMDCAS ISO 13485: 2003 Accredited Since 2005.

Trademark Acknowledgment

A.B Dental[™] is a trademark of A.B Dental Devices Ltd.

ACE Infinity[™] and TRI-CAM[™] are trademarks of ACE Surgical Supplies Co.

Adin[™] and Toureg[™] and CloseFit[™] are trademarks of Adin Dental Implant Systems Ltd.

Biohorizons® is a registered trademark of Biohorizons Inc.

Blue Sky Bio[™] and BioMax NP[™] are registered trademarks of Blue Sky Bio.

Hahn[™] is a registered trademark of Prismatic Dentalcraft Inc.

Implant Direct[™], InterActive[™], Swishactive[™], and Legacy[™] are trademarks of Implant Direct

Locator® is a registered trademark of Zest IP Holdings

MIS[™] and 7[™] and C4[™] are trademarks of MIS Implants Technologies LTD

Nobel[™] is a trademark of Nobel Biocare Services AG

NobelActive® is a registered trademark of Nobel Biocare Services AG

NobelBiocare[™] is a registered trademark of the Nobel Biocare Services AG

NobelReplace® is a registered trademark of the Nobel Biocare Services AG

Replace Select Services AG is a trademark of Nobel Biocare Services AG

RePLANT[™] is a trademark of Implant Direct

Screw-Vent® is a registered trademark of Zimmer Dental Inc.

Southern Implants®, Co-Axis® and TriNex®, are registered trademarks of Southern Implants

Strauman® is a registered trademark of Institut Straumann AG

Tissue Level[™] is a trademark of Institut Straumann AG

Zest® is a registered trademark of Zest IP Holdings

Zimmer® is a registered trademark of Zimmer Group